

Types of Relations, Inverse of a Relation, Mappings, Mapping of Functions, Kinds of Mapping of Functions

- 1. Let $A = \{a, b, c\}$ and $B = \{1, 2, 3, 4\}$. Then the number of elements in the set $C = \{f : A \rightarrow B \mid 2 \in f(A) \text{ and } f \text{ is not one-one}\}$ is _____. [NA Sep. 05, 2020 (II)]
- 2. Let a function $f:(0,\infty) \to (0,\infty)$ be defined by

$$f(x) = \left| 1 - \frac{1}{x} \right|$$
. Then *f* is : [Jan. 11, 2019 (II)]

- (a) not injective but it is surjective
- (b) injective only
- (c) neither injective nor surjective
- (d) both injective as well as surjective
- **3.** The number of functions f from {1, 2, 3, ..., 20} onto {1, 2, 3, ..., 20} such that f(k) is a multiple of 3, whenever k is a multiple of 4 is : [Jan. 11, 2019 (II)]
 - (a) $6^5 \times (15)!$ (b) $5! \times 6!$
 - (c) $(15)! \times 6!$ (d) $5^6 \times 15$
- 4. Let N be the set of natural numbers and two functions f and g be defined as $f, g : N \to N$ such that

$$f(\mathbf{n}) = \begin{cases} \frac{\mathbf{n}+1}{2} & \text{if } \mathbf{n} \text{ is odd} \\ \frac{\mathbf{n}}{2} & \text{if } \mathbf{n} \text{ is even} \end{cases}$$

and $g(n) = n - (-1)^n$. Then fog is: [Jan. 10, 2019 (II)]

- (a) onto but not one-one.
- (b) one-one but not onto.
- (c) both one-one and onto.
- (d) neither one-one nor onto.
- 5. Let $A = \{x \in \mathbf{R} : x \text{ is not a positive integer}\}$. Define a func-

tion f: A
$$\to$$
 R as $f(x) = \frac{2x}{x-1}$, then f is: [Jan. 09, 2019 (II)]

- (b) neither injective nor surjective
- (c) surjective but not injective
- (d) injective but not surjective

The function f:
$$R \rightarrow \left[-\frac{1}{2}, \frac{1}{2}\right]$$
 defined as $f(x) = \frac{x}{1 + x^2}$, is:
[2017]

- (a) neither injective nor surjective
- (b) invertible

6.

- (c) injective but not surjective
- (d) surjective but not injective
- 7. The function $f: N \to N$ defined by $f(x) = x 5 \lfloor \frac{x}{5} \rfloor$, where

N is set of natural numbers and [x] denotes the greatest integer less than or equal to x, is :

[Online April 9, 2017]

- (a) one-one and onto.
- (b) one-one but not onto.
- (c) onto but not one-one.
- (d) neither one-one nor onto.
- 8. Let $A = \{x_1, x_2, \dots, x_7\}$ and $B = \{y_1, y_2, y_3\}$ be two sets containing seven and three distinct elements respectively. Then the total number of functions $f : A \rightarrow B$ that are onto, if there exist exactly three elements *x* in A such that $f(x) = y_2$, is equal to : (Online April 11, 2015)

(a)
$$14.{}^{7}C_{3}$$
 (b) $16.{}^{7}C_{3}$ (c) $14.{}^{7}C_{2}$ (d) $12.{}^{7}C_{2}$

D. Let
$$f: R \to R$$
 be defined by $f(x) = \frac{|x|-1}{|x|+1}$ then f is:

[Online April 19, 2014]

- (a) both one-one and onto
- (b) one-one but not onto
- (c) onto but not one-one

CLICK HERE

(d) neither one-one nor onto.

Get More Learning Materials Here :

🕀 www.studentbro.in

10. Let P be the relation defined on the set of all real numbers such that

 $P = \{(a, b) : sec^2a - tan^2b = 1\}$. Then P is:

[Online April 9, 2014]

- (a) reflexive and symmetric but not transitive.
- (b) reflexive and transitive but not symmetric.
- (c) symmetric and transitive but not reflexive.
- (d) an equivalence relation.

м-252-

11. Let $R = \{(x, y) : x, y \in N \text{ and } x^2 - 4xy + 3y^2 = 0\}$, where N is the set of all natural numbers. Then the relation R is :

[Online April 23, 2013]

- (a) reflexive but neither symmetric nor transitive.
- (b) symmetric and transitive.
- (c) reflexive and symmetric,
- (d) reflexive and transitive.
- **12.** Let $R = \{(3,3), (5,5), (9,9), (12,12), (5,12), (3,9), (3,12), (3,5)\}$ be a relation on the set $A = \{3, 5, 9, 12\}$. Then, R is :

[Online April 22, 2013]

- (a) reflexive, symmetric but not transitive.
- (b) symmetric, transitive but not reflexive.
- (c) an equivalence relation.
- (d) reflexive, transitive but not symmetric.
- 13. Let $A = \{1, 2, 3, 4\}$ and $R : A \rightarrow A$ be the relation defined by $R = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$. The correct statement is : [Online April 9, 2013]
 - (a) R does not have an inverse.
 - (b) *R* is not a one to one function.
 - (c) *R* is an onto function.
 - (d) R is not a function.
- 14. If P(S) denotes the set of all subsets of a given set S, then the number of one-to-one functions from the set $S = \{1, 2, 3\}$ to the set P(S) is [Online May 19, 2012] (a) 24 (b) 8 (c) 336 (d) 320
- 15. If $A = \{x \in z^+ : x < 10 \text{ and } x \text{ is a multiple of 3 or } 4\}$, where z^+ is the set of positive integers, then the total number of [Online May 12, 2012] symmetric relations on A is $(d) 2^{20}$ (-) 25 a. 215 **a**10 (-)

(a)
$$2^{2}$$
 (b) 2^{2} (c) 2^{2} (d) 2^{2}

16. Let *R* be the set of real numbers. [2011] Statement-1: $A = \{(x, y) \in R \times R : y - x \text{ is an integer}\}$ is an equivalence relation on R.

Statement-2: $B = \{(x, y) \in R \times R : x = \alpha y \text{ for some rational} \}$ number α } is an equivalence relation on *R*.

- (a) Statement-1 is true. Statement-2 is true: Statement-2 is not a correct explanation for Statement-1.
- (b) Statement-1 is true, Statement-2 is false.
- (c) Statement-1 is false, Statement-2 is true.
- (d) Statement-1 is true. Statement-2 is true: Statement-2 is a correct explanation for Statement-1.

17. Consider the following relations:

 $R = \{(x, y) \mid x, y \text{ are real numbers and } x = wy \text{ for some } x =$

rational number w}; $S = \{\left(\frac{m}{n}, \frac{p}{q}\right) \mid m, n, p \text{ and } q \text{ are} \}$

integers such that $n, q \neq 0$ and qm = pn. Then

[2010]

[2008]

[2005]

- (a) Neither R nor S is an equivalence relation
- (b) S is an equivalence relation but R is not an equivalence relation
- (c) R and S both are equivalence relations
- (d) R is an equivalence relation but S is not an equivalence relation
- 18. Let *R* be the real line. Consider the following subsets of the plane $R \times R$:

 $S = \{(x, y): y = x + 1 \text{ and } 0 < x < 2\}$

 $T = \{(x, y): x - y \text{ is an integer}\},\$

Which one of the following is true?

- (a) Neither S nor T is an equivalence relation on R
- (b) Both S and T are equivalence relation on R
- (c) S is an equivalence relation on R but T is not
- (d) T is an equivalence relation on R but S is not
- **19.** Let W denote the words in the English dictionary. Define the relation R by $R = \{(x, y) \in W \times W | \text{ the words } x \text{ and } y \}$ have at least one letter in common.} Then R is [2006]
 - (a) not reflexive, symmetric and transitive
 - (b) relexive, symmetric and not transitive
 - (c) reflexive, symmetric and transitive
 - (d) reflexive, not symmetric and transitive
- **20.** Let $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9), (3$ (3, 12), (3, 6) be a relation on the set
 - $A = \{3, 6, 9, 12\}$. The relation is
 - (a) reflexive and transitive only
 - (b) reflexive only
 - (c) an equivalence relation
 - (d) reflexive and symmetric only

21. Let
$$f: (-1, 1) \rightarrow B$$
, be a function defined by $f(x) = \tan^{-1} \frac{2x}{x}$, then f is both one - one and onto when

$$1-x^2$$
, when the order of the and of the first of the f

(b) $\left| 0, \frac{\pi}{2} \right|$

(a)
$$\left(0,\frac{\pi}{2}\right)$$

(c)
$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$
 (d) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

- **22.** Let $R = \{(1,3), (4,2), (2,4), (2,3), (3,1)\}$ be a relation on the
 - set $A = \{1, 2, 3, 4\}$. The relation R is
 - (a) reflexive (b) transitive
 - (c) not symmetric (d) a function

CLICK HERE

[2004]

- 23. If $f: R \to S$, defined by $f(x) = \sin x \sqrt{3} \cos x + 1$, is onto, then the interval of S is [2004] (a) [-1, 3] (b) [-1, 1] (c) [0, 1](d) [0,3]
- 24. A function f from the set of natural numbers to integers defined by [2003]

$$f(n) = \begin{cases} \frac{n-1}{2}, \text{ when n is odd} \\ -\frac{n}{2}, \text{ when n is even} \end{cases}$$
 is

- (a) neither one -one nor onto
- (b) one-one but not onto
- (c) onto but not one-one
- (d) one-one and onto both.

25. The inverse function of
$$f(x) = \frac{8^{2x} - 8^{-2x}}{8^{2x} + 8^{-2x}}, x \in (-1,1)$$
, is

[Jan. 8, 2020 (I)]

(a)
$$\frac{1}{4}\log_e\left(\frac{1+x}{1-x}\right)$$
 (b) $\frac{1}{4}(\log_8 e)\log_e\left(\frac{1-x}{1+x}\right)$
(c) $\frac{1}{4}\log_e\left(\frac{1-x}{1+x}\right)$ (d) $\frac{1}{4}(\log_8 e)\log_e\left(\frac{1+x}{1-x}\right)$

26. If
$$g(x) = x^2 + x - 1$$
 and $(gof)(x) = 4x^2 - 10x + 5$, then $f\left(\frac{5}{4}\right)$ is equal to: [Jan. 7, 2020 (I)]

(a)
$$\frac{3}{2}$$
 (b) $-\frac{1}{2}$ (c) $\frac{1}{2}$ (d) $-\frac{3}{2}$

27. For a suitably chosen real constant a, let a function,

 $f: \mathbb{R} - \{-a\} \rightarrow \mathbb{R}$ be defined by $f(x) = \frac{a-x}{a+x}$. Further suppose that for any real number $x \neq -a$ and $f(x) \neq -a$, (fof)(x) = x. Then $f\left(-1\right)$:

$$f(x) = x$$
. Then $f(-\frac{1}{2})$ is equal to:

[Sep. 06, 2020 (II)]

(a)
$$\frac{1}{3}$$
 (b) $-\frac{1}{3}$ (c) -3 (d) 3

28. For
$$x \in \left(0, \frac{3}{2}\right)$$
, let $f(x) = \sqrt{x}$, $g(x) = \tan x$ and $h(x) = \frac{1-x^2}{1+x^2}$.
If $\phi(x) = ((hof)og)(x)$, then $\phi\left(\frac{\pi}{3}\right)$ is equal to :
[April 12, 2019 (I)]
(a) $\tan \frac{\pi}{12}$ (b) $\tan \frac{11\pi}{12}$ (c) $\tan \frac{7\pi}{12}$ (d) $\tan \frac{5\pi}{12}$
29. Let $f(x) = x^2, x \in \mathbb{R}$. For any $A \subseteq \mathbb{R}$, define $g(A) = \{x \in \mathbb{R} : f(x) \in A\}$. If $S = [0, 4]$, then which one of the following statements is not true ? [April 10, 2019 (I)]
(a) $g(f(S)) \neq S$ (b) $f(g(S)) = S$
(c) $g(f(S)) = g(S)$ (d) $f(g(S)) \neq f(S)$
30. For $x \in \mathbb{R} - \{0, 1\}$, let $f_1(x) = \frac{1}{x}, f_2(x) = 1 - x$ and $f_3(x) = \frac{1}{1-x}$ be three given functions. If a function, $J(x)$ satisfies $(f_2 OJof_1)(x) = f_3(x)$ then $J(x)$ is equal to:

(a)
$$f_3(x)$$
 (b) $\frac{1}{x} f_3(x)$ (c) $f_2(x)$ (d) $f_1(x)$

31. Let N denote the set of all natural numbers. Define two binary relations on N as $R_1 = \{(x, y) \in N \times N : 2x + y = 10\}$ and $R_2 = \{(x, y) \in N \times N : x + 2y = 10\}$. Then

[Online April 16, 2018]

[Jan. 09, 2019 (I)]

- (a) Both R_1 and R_2 are transitive relations
- (b) Both R_1 and R_2 are symmetric relations
- (c) Range of R_2 is $\{1, 2, 3, 4\}$
- (d) Range of R_1 is $\{2, 4, 8\}$
- 32. Consider the following two binary relations on the set $A = \{a, b, c\} : R_1 = \{(c, a) (b, b), (a, c), (c, c), (b, c), (a, a)\}$ and $R_2 = \{(a, b), (b, a), (c, c), (c, a), (a, a), (b, b), (a, c).$ Then [Online April 15, 2018]
 - (a) R_2 is symmetric but it is not transitive
 - (b) Both R_1 and R_2 are transitive
 - (c) Both R_1 and R_2 are not symmetric
 - (d) R_1 is not symmetric but it is transitive

33. Let
$$f: A \to B$$
 be a function defined as $f(x) = \frac{x-1}{x-2}$, where

$$A = R - \{2\}$$
 and $B = R - \{1\}$. Then *f* is
[Online April 15, 2018]

(a) invertible and
$$f^{-1}(y) = \frac{2y+1}{y-1}$$

- (b) invertible and $f^{-1}(y) = \frac{3y-1}{y-1}$
- (c) no invertible

CLICK HERE

(d) invertible and
$$f^{-1}(y) = \frac{2y-1}{y-1}$$

34. Let $f(x) = 2^{10} \cdot x + 1$ and $g(x) = 3^{10} \cdot x - 1$. If (fog)(x) = x, then x is equal to : [Online April 8, 2017]

(a)
$$\frac{3^{10}-1}{3^{10}-2^{-10}}$$
 (b) $\frac{2^{10}-1}{2^{10}-3^{-10}}$
(c) $\frac{1-3^{-10}}{2^{10}-3^{-10}}$ (d) $\frac{1-2^{-10}}{3^{10}-2^{-10}}$

35. For $x \in R, x \neq 0$, let $f_0(x) = \frac{1}{1-x}$ and $f_{n+1}(x) = f_0(f_n(x))$,

n = 0, 1, 2, Then the value of $f_{100}(3) + f_1\left(\frac{2}{3}\right) + f_2\left(\frac{3}{2}\right)$ is [Online April 9, 2016]

equal to :

(a)
$$\frac{8}{3}$$
 (b) $\frac{4}{3}$ (c) $\frac{5}{3}$ (d) $\frac{1}{3}$

36. If g is the inverse of a function f and $f'(x) = \frac{1}{1 + x^5}$, then

$$g'(x)$$
 is equal to: [2014]

(a)
$$\frac{1}{1 + \{g(x)\}^5}$$
 (b) $1 + \{g(x)\}^5$
(c) $1 + x^5$ (d) $5x^4$

37. Let A and B be non empty sets in R and $f: A \rightarrow B$ is a bijective function. [Online May 26, 2012] Statement 1: f is an onto function.

Statement 2: There exists a function $g: B \rightarrow A$ such that $fog = I_R$.

- (a) Statement 1 is true, Statement 2 is false.
- (b) Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for Statement 1.
- (c) Statement 1 is false, Statement 2 is true.
- (d) Statement 1 is true, Statement 2 is true, Statement 2 is not the correct explanation for Statement 1.

38. Let *f* be a function defined by

$$f(x) = (x-1)^2 + 1, (x \ge 1).$$
 [2011RS]

Mathematics

[2009]

Statement - 1 : The set $\{x : f(x) = f^{-1}(x)\} = \{1, 2\}$.

Statement - 2 : f is a bijection and

 $f^{-1}(x) = 1 + \sqrt{x - 1}, x \ge 1.$

- (a) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is true, Statement-2 is true; Statement-2 is NOT a correct explanation for Statement-1.
- (c) Statement-1 is true, Statement-2 is false.
- (d) Statement-1 is false, Statement-2 is true.

39. Let
$$f(x) = (x+1)^2 - 1, x \ge -1$$

Statement -1 : The set $\{x : f(x) = f^{-1}(x) = \{0, -1\}$

Statement-2: f is a bijection.

- (a) Statement-1 is true, Statement-2 is true. Statement-2 is not a correct explanation for Statement-1.
- (b) Statement-1 is true, Statement-2 is false.
- (c) Statement-1 is false, Statement-2 is true.
- (d) Statement-1 is true. Statement-2 is true. Statement-2 is a correct explanation for Statement-1.

40. Let
$$f: N \rightarrow Y$$
 be a function defined as $f(x) = 4x + 3$ where $Y = \{y \in N : y = 4x + 3 \text{ for some } x \in N\}.$

Show that *f* is invertible and its inverse is [2008]

(a)
$$g(y) = \frac{3y+4}{3}$$
 (b) $g(y) = 4 + \frac{y+3}{4}$

(c)
$$g(y) = \frac{y+3}{4}$$
 (d) $g(y) = \frac{y-3}{4}$

Hints & Solutions

1. (19.00)

The desired functions will contain either one element or two elements in its codomain of which '2' always belongs to f(A).

 \therefore The set *B* can be {2}, {1, 2}, {2, 3}, {2, 4} Total number of functions = $1 + (2^3 - 2)3 = 19$.

(Bonus) $f: (0, \infty) \rightarrow (0, \infty)$ 2.

 $f(x) = \left| 1 - \frac{1}{x} \right|$ is not a function

:: f(1) = 0 and $1 \in \text{domain but } 0 \notin \text{co-domain}$ Hence, f(x) is not a function.

3. (c) Domain and codomain = $\{1, 2, 3, ..., 20\}$. There are five multiple of 4 as 4, 8, 12, 16 and 20. and there are 6 multiple of 3 as 3, 6, 9, 12, 15, 18.

Since, when ever k is multiple of 4 then f(k) is multiple of 3 then total number of arrangement

$$= {}^{6}C_{5} \times 5! = 6!$$

Remaining 15 elements can be arranged in 15! ways. Since, for every input, there is an output

function f(k) in onto \Rightarrow

Total number of arrangement = 15!. 6! ÷.

4. (a)
$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$

$$g(n) = \begin{cases} 2, & n = 1 \\ 1, & n = 2 \\ 4, & n = 3 \\ 3, & n = 4 \\ 6, & n = 5 \\ 5, & n = 6 \end{cases}$$

Then,

$$f(g(n)) = \begin{cases} \frac{g(n)+1}{2}, & \text{if } g(n) \text{ is odd} \\ \frac{g(n)}{2}, & \text{if } g(n) \text{ is even} \end{cases}$$

n = 11. 1, n = 22, n = 32, *n* = 4 3, *n* = 5 3, n = 6f(g(n)) =:

 \Rightarrow fog is onto but not one - one

5. (d) As
$$A = \{x \in R : x \text{ is not a positive integer}\}$$

A function $f: A \to R$ given by $f(x) = \frac{2x}{x-1}$ $f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2$ So, f is one-one. As $f(x) \neq 2$ for any $x \in A \Rightarrow f$ is not onto. Hence f is injective but not surjective.

6. (d) We have
$$f: \mathbb{R} \to \left[-\frac{1}{2}, \frac{1}{2}\right]$$
,

sign of f'(x) \Rightarrow f'(x) changes sign in different intervals. .: Not injective

Now $y = \frac{x}{1+x^2}$ $\Rightarrow y + yx^2 = x$ $\Rightarrow yx^2 - x + y = 0$ For $y \neq 0$, $D = 1 - 4y^2 \ge 0$ $\Rightarrow y \in \left[\frac{-1}{2}, \frac{1}{2}\right] - \{0\}$ For $y = 0 \Longrightarrow x = 0$ \therefore Range is $\left|\frac{-1}{2}, \frac{1}{2}\right|$

Surjective but not injective

CLICK HERE

(d) f(1) = 1 - 5[1/5] = 1f(6) = 6 - 5[6/5] = 1 \rightarrow Many one 7.

> f(10) = 10 - 5(2) = 0 which is not in co-domain. Neither one-one nor onto.

(a) Number of onto function such that exactly three 8. elements in $x \in A$ such that $f(x) = \frac{1}{2}$ is equal to $= {}^{7}C_{3}, \{2^{4}-2\} = 14. {}^{7}C_{3}$

9. (c)
$$f(x) = \frac{|x|-1}{|x|+1}$$

for one-one function if $f(x_1) = f(x_2)$ then x_1 must be equal to x_2 Let $f(x_1) = f(x_2)$ $|x_1| - 1$ $|x_2| - 1$

$$\frac{|x_1|}{|x_1|+1} = \frac{|x_2|}{|x_2|+1}$$

$$|x_1||x_2|+|x_1|-|x_2|-1 = |x_1||x_2|-|x_1|+|x_2|-1$$

$$\Rightarrow |x_1|-|x_2| = |x_2|-|x_1|$$

$$2|x_1| = 2|x_2|$$

$$|x_1| = |x_2|$$

$$x_1 = x_2, x_1 = -$$

 x_2 here x_1 has two values therefore function is many one function.

For onto : $f(x) = \frac{|x|-1}{|x|+1}$

for every value of f(x) there is a value of x in domain set.

If f(x) is negative then x = 0

for all positive value of f(x), domain contain at least one element. Hence f(x) is onto function.

10. (d)
$$P = \{(a,b) : \sec^2 a - \tan^2 b = 1\}$$

For reflexive :

 $\sec^2 a - \tan^2 a = 1$ (true $\forall a$) For symmetric : $\sec^2 b - \tan^2 a = 1$ LHS $1 + \tan^2 b - (\sec^2 a - 1) = 1 + \tan^2 b - \sec^2 a + 1$ $= -(\sec^2 a - \tan^2 b) + 2$ = -1 + 2 = 1So, Relation is symmetric For transitive : if $\sec^2 a - \tan^2 b = 1$ and $\sec^2 b - \tan^2 c = 1$ $\sec^2 a - \tan^2 c = (1 + \tan^2 b) - (\sec^2 b - 1)$ $= -\sec^2 b + \tan^2 b + 2$ = -1 + 2 = 1So, Relation is transitive. Hence, Relation P is an equivalence relation

Now, $x^2 - 4xv + 3v^2 = 0$ $\Rightarrow (x-y)(x-3y)=0$ \therefore x = y or x = 3y \therefore R = {(1, 1), (3, 1), (2, 2), (6, 2), (3, 3), $(9,3),\ldots\}$ Since (1, 1), (2, 2), (3, 3),..... are present in the relation, therefore R is reflexive. Since (3, 1) is an element of R but (1, 3) is not the element of R, therefore R is not symmetric Here $(3, 1) \in \mathbb{R}$ and $(1, 1) \in \mathbb{R} \implies (3, 1) \in \mathbb{R}$ $(6, 2) \in \mathbb{R}$ and $(2, 2) \in \mathbb{R} \implies (6, 2) \in \mathbb{R}$ For all such $(a, b) \in \mathbb{R}$ and $(b, c) \in \mathbb{R}$ \Rightarrow (*a*, *c*) \in R Hence R is transitive. **12.** (d) Let $R = \{(3,3), (5,5), (9,9), (12,12), (5,12), (3,9), (3,12), (3,1$ (3, 5)} be a relation on set $A = \{3, 5, 9, 12\}$ Clearly, every element of A is related to itself. Therefore, it is a reflexive. Now, R is not symmetry because 3 is related to 5 but 5 is not related to 3. Also R is transitive relation because it satisfies the property that if *a* R *b* and *b* R *c* then *a* R *c*. (c) Domain = $\{1, 2, 3, 4\}$ Range = $\{1, 2, 3, 4\}$ \therefore Domain = Range Hence the relation R is onto function.

11. (d) $R = \{(x, y) : x, y \in N \text{ and } x^2 - 4xy + 3y^2 = 0\}$

14. (c) Let $S = \{1, 2, 3\} \Rightarrow n(S) = 3$ Now, P(S) = set of all subsets of Stotal no. of subsets = $2^3 = 8$ $\therefore n[P(S)] = 8$ Now, number of one-to-one functions from $S \rightarrow P(S)$ is

$${}^{8}P_{3} = \frac{8!}{5!} = 8 \times 7 \times 6 = 336$$

13.

15. (b) A relation on a set A is said to be symmetric iff $(a,b) \in A \Rightarrow (b,a) \in A, \forall a,b \in A$

Here $A = \{3, 4, 6, 8, 9\}$ Number of order pairs of $A \times A = 5 \times 5 = 25$ Divide 25 order pairs of $A \times A$ in 3 parts as follows : Part - A: (3, 3), (4, 4), (6, 6), (8, 8), (9, 9)Part -B: (3, 4), (3, 6), (3, 8), (3, 9), (4, 6), (4, 8), (4, 9), (6, 8), (6, 9), (8, 9) Part – C: (4, 3), (6, 3), (8, 3), (9, 3), (6, 4), (8, 4), (9, 4), (8, 6), (9, 6), (9, 8) In part -A, both components of each order pair are same. In part -B, both components are different but not two such order pairs are present in which first component of one order pair is the second component of another order pair and vice-versa.

🕀 www.studentbro.in

In part-C, only reverse of the order pairs of part -B are present i.e., if (a, b) is present in part -B, then (b, a) will be present in part -CFor example (3, 4) is present in part – B and (4, 3) present in part-C. Number of order pair in A, B and C are 5, 10 and 10 respectively. In any symmetric relation on set A, if any order pair of part -B is present then its reverse order pair of part -C will must be also present. Hence number of symmetric relation on set A is equal to the number of all relations on a set D, which contains all the order pairs of part -A and part -B. Now n(D) = n(A) + n(B) = 5 + 10 = 15Hence number of all relations on set $D = (2)^{15}$ \Rightarrow Number of symmetric relations on set $D = (2)^{15}$ 16. (a) $\therefore x - x = 0 \in I(\therefore R \text{ is reflexive})$ Let $(x, y) \in R$ as x - y and $y - x \in I$ (:: *R* is symmetric) Now $x - y \in I$ and $y - z \in I \Longrightarrow x - z \in I$ So, R is transative. Hence *R* is equivalence. Similarly as $x = \alpha y$ for $\alpha = 1$. B is reflexive symmetric and transative. Hence B is equivalence. Both relations are equivalence but not the correct explanation. **17.** (b) Let x R y. $\Rightarrow x = wy \Rightarrow y = \frac{x}{w}$ \Rightarrow (*y*, *x*) \notin *R*

R is not symmetric

Let
$$S: \frac{m}{n} S \frac{p}{q}$$

 $\Rightarrow qm = pn \Rightarrow \frac{p}{q} = \frac{m}{n}$
 $\therefore \frac{m}{n} = \frac{m}{n} \therefore$ reflexive.
 $\frac{m}{n} = \frac{p}{q} \Rightarrow \frac{p}{q} = \frac{m}{n} \therefore$ symmetric
Let $\frac{m}{n} S \frac{p}{q}, \frac{p}{q} S \frac{r}{s}$
 $\Rightarrow qm = pn, ps = rq$
 $\Rightarrow \frac{p}{q} = \frac{m}{n} = \frac{r}{s}$
 $\Rightarrow ms = rn$ transitive.
S is an equivalence relation.
(d) Given that
 $S = \{(x, y): y = x + 1 \text{ and } 0 < x < 2\}$
 $\therefore x \neq x + 1$ for any $x \in (0, 2)$
 $\Rightarrow (x, x) \notin S$

So, S is not reflexive. Hence, S in not an equivalence relation. Given $T = \{x, y\}: x - y$ is an integer $\}$ $\therefore x - x = 0$ is an integer, $\forall x \in R$ So, T is reflexive. Let $(x, y) \in T \implies x - y$ is an integer then y - x is also an integer $\implies (y, x) \in R$ $\therefore T$ is symmetric If x - y is an integer and y - z is an integer then (x - y) + (y - z) = x - z is also an integer. $\therefore T$ is transitive Hence T is an equivalence relation.

19. (b) Clearly $(x, x) \in R, \forall x \in W$

 \therefore All letter are common in some word. So *R* is reflexive.

Let $(x, y) \in R$, then $(y, x) \in R$ as x and y have at least one letter in common. So, R is symmetric. But R is not transitive for example Let x=BOY, y=TOY and z=THREE

then $(x, y) \in R(O, Y \text{ are common})$ and $(y, z) \in R(T \text{ is common})$ but $(x, z) \notin R$. (as no letter is common)

- **20.** (a) R is reflexive and transitive only. Here $(3, 3), (6, 6), (9, 9), (12, 12) \in \mathbb{R}$ [So, reflexive] $(3, 6), (6, 12), (3, 12) \in \mathbb{R}$ [So, transitive]. \therefore (3, 6) $\in \mathbb{R}$ but (6, 3) $\notin \mathbb{R}$ [So, non-symmetric]
- **21.** (d) Given $f(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) = 2\tan^{-1}x$

for
$$x \in (-1, 1)$$

If
$$x \in (-1, 1) \Rightarrow \tan^{-1} x \in \left(\frac{-\pi}{4}, \frac{\pi}{4}\right)$$

$$\Rightarrow 2 \tan^{-1} x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

Clearly, range of $f(x) = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

For f to be onto, codomain = range

$$\therefore$$
 Co-domain of function = $B = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

- 22. (c) \therefore (1, 1) $\notin R \Rightarrow R$ is not reflexive \therefore (2, 3) $\in R$ but (3, 2) $\notin R$ \therefore R is not symmetric \therefore (4, 2) and (2, 4) $\in R$ but (4, 4) $\notin R$ $\Rightarrow R$ is not transitive
- **23.** (a) Given that f(x) is onto \therefore range of f(x) = codomain = S

CLICK HERE

18.

м-258—

Now, $f(x) = \sin x - \sqrt{3} \cos x + 1$

$$= 2\sin\left(x - \frac{\pi}{3}\right) + 1$$

we know that $-1 \le \sin\left(x - \frac{\pi}{3}\right) \le 1$

$$-1 \le 2\sin\left(x - \frac{\pi}{3}\right) + 1 \le 3 \qquad \therefore f(x) \in [-1, 3] = S$$

24. (d) We have $f: N \to I$

Let x and y are two even natural numbers,

and
$$f(x) = f(y) \Rightarrow \frac{-x}{2} = \frac{-y}{2} \Rightarrow x = y$$

 $\therefore f(n)$ is one-one for even natural number. Let x and y are two odd natural numbers and

$$f(x) = f(y) \Rightarrow \frac{x-1}{2} = \frac{y-1}{2} \Rightarrow x = y$$

 $\therefore f(n)$ is one-one for odd natural number. Hence *f* is one-one.

Let
$$y = \frac{n-1}{2} \Longrightarrow 2y+1 = n$$

This shows that *n* is always odd number for $y \in I$.

and $y = \frac{-n}{2} \Longrightarrow -2y = n$

This shows that *n* is always even number for $y \in I$.

From (i) and (ii) Range of f = I = codomain $\therefore f \text{ is onto.}$

Hence f is one one and onto both.

25. (a)
$$y = \frac{8^{2x} - 8^{-2x}}{8^{2x} + 8^{-2x}}$$

 $\frac{1+y}{1-y} = \frac{8^{2x}}{8^{-2x}} \implies 8^{4x} = \frac{1+y}{1-y}$
 $\implies 4x = \log_8 \left(\frac{1+y}{1-y}\right)$
 $\implies x = \frac{1}{4} \log_8 \left(\frac{1+y}{1-y}\right)$
 $\therefore f^{-1}(x) = \frac{1}{4} \log_8 \left(\frac{1+x}{1-x}\right)$

26. **(b)**
$$(gof)(x) = g(f(x)) = f^{2}(x) + f(x) - 1$$

 $g\left(f\left(\frac{5}{4}\right)\right) = 4\left(\frac{5}{4}\right)^{2} - 10 \cdot \frac{5}{4} + 5 = -\frac{5}{4}$
 $[\because g(f(x)) = 4x^{2} - 10x + 5]$
 $g\left(f\left(\frac{5}{4}\right)\right) = f^{2}\left(\frac{5}{4}\right) + f\left(\frac{5}{4}\right) - 1$
 $-\frac{5}{4} = f^{2}\left(\frac{5}{4}\right) + f\left(\frac{5}{4}\right) - 1$
 $f^{2}\left(\frac{5}{4}\right) + f\left(\frac{5}{4}\right) + \frac{1}{4} = 0$
 $\left(f\left(\frac{5}{4}\right) + \frac{1}{2}\right)^{2} = 0$
 $t\left(\frac{5}{4}\right) = -\frac{1}{2}$

27. (d)
$$f(f(x)) = \frac{a - \left(\frac{a - x}{a + x}\right)}{a + \left(\frac{a - x}{a + x}\right)} = x$$

$$\Rightarrow \frac{a - ax}{1 + x} = f(x) \Rightarrow \frac{a(1 - x)}{1 + x} = \frac{a - x}{a + x} \Rightarrow a = 1$$
$$\therefore f(x) = \frac{1 - x}{1 + x} \Rightarrow f\left(-\frac{1}{2}\right) = 3$$

28. (b) ::
$$\phi(x) = ((hof) og)(x)$$

.....(i)

.....(ii)

$$\therefore \quad \phi\left(\frac{\pi}{3}\right) = h\left(f\left(g\left(\frac{\pi}{3}\right)\right)\right) = h(f(\sqrt{3})) = h(3^{1/4})$$

$$= \frac{1-\sqrt{3}}{1+\sqrt{3}} = -\frac{1}{2}(1+3-2\sqrt{3}) = \sqrt{3}-2 = -(-\sqrt{3}+2)$$

$$= -\tan 15^\circ = \tan (180^\circ - 15^\circ) = \tan \left(\pi - \frac{\pi}{12} \right) = \tan \frac{11\pi}{12}$$

29. (c)
$$f(x) = x^2$$
; $x \in \mathbb{R}$
 $g(A) = \{x \in \mathbb{R} : f(x) \in A\} S = [0, 4]$
 $g(S) = \{x \in \mathbb{R} : f(x) \in S\}$
 $= \{x \in \mathbb{R} : 0 \le x^2 \le 4\} = \{x \in \mathbb{R} : -2 \le x \le 2\}$
 $\therefore g(S) \ne S \therefore f(g(S)) \ne f(S)$
 $g(f(S)) = \{x \in \mathbb{R} : f(x) \in f(S)\}$
 $= \{x \in \mathbb{R} : x^2 \in S^2\} = \{x \in \mathbb{R} : 0 \le x^2 \le 16\}$
 $= \{x \in \mathbb{R} : -4 \le x \le 4\}$
 $\therefore g(f(S)) \ne g(S)$
 $\therefore g(f(S)) = g(S)$ is incorrect.

30. (a) The given relation is

$$(f_2 \circ J \circ f_1)(x) = f_3(x) = \frac{1}{1-x}$$

$$\Rightarrow (f_2 \circ J)(f_1(x)) = \frac{1}{1-x}$$

$$\Rightarrow (f_2 \circ J)\left(\frac{1}{x}\right) = \frac{1}{1-\frac{1}{\frac{1}{x}}} = \frac{\frac{1}{x}}{\frac{1}{x}-1} \left[\because f_1(x) = \frac{1}{x}\right]$$

$$\Rightarrow (f_2 \circ J)(x) = \frac{x}{x-1} \qquad \left[\frac{1}{x} \text{ is replaced by } x\right]$$

$$\Rightarrow f_2(J(x)) = \frac{x}{x-1}$$

$$\Rightarrow 1-J(x) = \frac{x}{x-1} \qquad [\because f_2(x) = 1-x]$$

$$\therefore J(x) = 1 - \frac{x}{x-1} = \frac{1}{1-x} = f_3(x)$$

31. (c) Here, $R_1 = \{(x, y) \in N \times N : 2x + y = 10\}$ and $R_2 = \{(x, y) \in N \times N : x + 2y = 10\}$ For R_1 ; 2x + y = 10 and $x, y \in N$ So, possible values for x and y are: x = 1, y = 8 i.e. (1, 8);x = 2, y = 6 i.e. (2, 6);x=3, y=4 i.e. (3, 4) and x = 4, y = 2 i.e. (4, 2). $R_1 = \{(1, 8), (2, 6), (3, 4), (4, 2)\}$ Therefore, Range of R_1 is $\{2, 4, 6, 8\}$ R_1 is not symmetric Also, R_1 is not transitive because (3, 4), (4, 2) $\in R_1$ but $(3,2) \notin R_1$ Thus, options A, B and D are incorrect. For R_2 ; x + 2y = 10 and $x, y \in N$ So, possible values for *x* and *y* are: x = 8, y = 1 i.e. (8, 1);x = 6, y = 2 i.e. (6, 2);x = 4, y = 3 i.e. (4, 3) and x=2, y=4 i.e. (2, 4) $R_2 = \{(8, 1), (6, 2), (4, 3), (2, 4)\}$ Therefore, Range of R_2 is $\{1, 2, 3, 4\}$ R_2 is not symmetric and transitive. **32.** (a) Both R_1 and R_2 are symmetric as

For any $(x, y) \in R_1$, we have $(y, x) \in R_1$ and similarly for R_2 Now, for R_2 , $(b, a) \in R_2$, $(a, c) \in R_2$ but $(b, c) \notin R_2$. Similarly, for R_1 , $(b, c) \in R_1$, $(c, a) \in R_1$ but $(b, a) \notin R_1$. Therefore, neither R_1 nor R_2 is transitive.

33. (d) Suppose y = f(x)

$$\Rightarrow y = \frac{x-1}{x-2}$$
$$\Rightarrow yx - 2y = x - 1$$
$$\Rightarrow (y-1)x = 2y - 1$$
$$\Rightarrow x = f^{-1}(y) = \frac{2y - 1}{y - 1}$$

As the function is invertible on the given domain and its inverse can be obtained as above.

34. (d)
$$f(g(x)) = x$$

 $\Rightarrow f(3^{10}x - 1) = 2^{10} (3^{10} \cdot x - 1) + 1 = x$
 $\Rightarrow 2^{10} (3^{10}x - 1) + 1 = x$
 $\Rightarrow x (6^{10} - 1) = 2^{10} - 1$
 $\Rightarrow x = \frac{2^{10} - 1}{6^{10} - 1} = \frac{1 - 2^{-10}}{3^{10} - 2^{-10}}$
35. (c) $f_1(x) = f_{0+1}(x) = f_0(f_0(x)) = \frac{1}{1 - \frac{1}{1 - x}} = \frac{x - 1}{x}$

$$f_2(x) = f_{1+1}(x) = f_0(f_1(x)) = \frac{1}{1 - \frac{x - 1}{x}} = x$$

$$f_{3}(x) = f_{2+1}(x) = f_{0}(f_{2}(x)) = f_{0}(x) = \frac{1}{1-x}$$
$$f_{4}(x) = f_{3+1}(x) = f_{0}(f_{3}(x)) = \frac{x-1}{x}$$

$$\therefore f_0 = f_3 = f_6 = \dots = \frac{1}{1 - x}$$

$$f_1 = f_4 = f_7 = \dots = \frac{x-1}{x}$$

 $f_2 = f_5 = f_8 = \dots = x$

$$f_{100}(3) = \frac{3-1}{3} = \frac{2}{3}f_1\left(\frac{2}{3}\right) = \frac{\frac{2}{3}-1}{\frac{2}{3}} = -\frac{1}{2}$$

$$f_2\left(\frac{3}{2}\right) = \frac{3}{2}$$

$$\therefore \quad f_{100}(3) + f_1\left(\frac{2}{3}\right) + f_2\left(\frac{3}{2}\right) = \frac{5}{3}$$

CLICK HERE

- м-259

🕀 www.studentbro.in

36. (b) Since f(x) and g(x) are inverse of each other

$$\therefore g'(f(x)) = \frac{1}{f'(x)}$$

$$\Rightarrow g'(f(x)) = 1 + x^5 \qquad \left(\because f'(x) = \frac{1}{1 + x^5}\right)$$
Here $x = g(y)$

 $\therefore \quad g'(y) = 1 + [g(y)]^5$

 $\Rightarrow g'(x) = 1 + (g(x))^5$

37. (d) Let A and B be non-empty sets in R. Let f: A → B is bijective function.
Clearly statement - 1 is true which says that f is an onto function.

Statement - 2 is also true statement but it is not the correct explanation for statement-1

38. (a) Given f is a bijective function

$$\therefore f:[1,\infty) \to [1,\infty)$$

$$f(x) = (x-1)^2 + 1, x \ge 1$$
Let $y = (x-1)^2 + 1 \Rightarrow (x-1)^2 = y-1$

$$\Rightarrow x = 1 \pm \sqrt{y-1} \Rightarrow f^{-1}(y) = 1 \pm \sqrt{y-1}$$

$$\Rightarrow f^{-1}(x) = 1 + \sqrt{x-1} \{ \therefore x \ge 1 \}$$

Hence statement-2 is correct

- Now $f(x) = f^{-1}(x)$ $\Rightarrow f(x) = x \Rightarrow (x-1)^2 + 1 = x$ $\Rightarrow x^2 - 3x + 2 = 0 \Rightarrow x = 1, 2$ Hence statement-1 is correct **39.** (d) Given that $f(x) = (x+1)^2 - 1$, $x \ge -1$ Clearly $D_f = [-1, \infty)$ but co-domain is not given. Therefore f(x) is onto. Let $f(x_1) = f(x_2)$ $\Rightarrow (x_1 + 1)^2 - 1 = (x_2 + 1)^2 - 1$ $\Rightarrow x_1 = x_2$ \therefore f(x) is one-one, hence f(x) is bijection \therefore (x+1) being something +ve, $\forall x > -1$ $\therefore f^{-1}(x)$ will exist. Let $(x+1)^2 - 1 = y$ $\Rightarrow x+1 = \sqrt{y+1}$ (+ve square root as $x + 1 \ge 0$) $\Rightarrow x = -1 + \sqrt{v+1}$ $\Rightarrow f^{-1}(x) = \sqrt{x+1} - 1$ Then $f(x) = f^{-1}(x)$ $\Rightarrow (x+1)^2 - 1 = \sqrt{x+1} - 1$ $\Rightarrow (x+1)^2 = \sqrt{x+1} \Rightarrow (x+1)^4 = (x+1)$ \Rightarrow $(x+1)[(x+1)^3-1]=0 \Rightarrow x=-1, 0$... The statement-1 and statement-2 both are true.
- 40. (d) Clearly f(x) = 4x + 3 is one one and onto, so it is invertible. Let f(x)=4x+3=y

$$\Rightarrow x = \frac{y-3}{4} \qquad \therefore g(y) = \frac{y-3}{4}$$

